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1 Optimality of Lempel-Ziv Coding, The Burrows-Wheeler
Transform, and Optimal Compression of IID Sequences

1.1 Asymptotic optimality of Lempel-Ziv coding

Last time, we were in the discussing LZ’77 for a general ergodic process (Xn, n ∈ Z) with
Xn ∈X (finite). For any L ≥ 1, we defined

RL(XL−1
0 ) := min{j ≥ 1 : X−j+L−1−j = XL−1

0 }.

The compressor conveys RL(XL−1
0 ) to the decompressor. The compressor knows (Xn, n ≤

−1) and XL−1
0 ; the decompressor only knows the past, (Xn, n ≤ −1). This suffices for the

decompressor to determine XL−1
0 . By comma-free encoding, it suffices to send

logRL(XL−1
0 ) + log logRL(XL−1

0 ) + 5

many bits. Then

E[RL(XL−1
0 )] ≤ logE[RL(XL−1

0 )]

= log
1

p(XL−1
0 )

,

= H(X0, . . . , XL−1)

by Kac’s lemma. So for fixed L,

1

L
E[logRL(XL−1

0 )] ≤ 1

L
H(XL−1

0 ).

So

lim sup
L→∞

1

L
E[logRL(XL−1

0 )] ≤ H,

the entropy rate. Also,

1

L
E[log logRL(XL−1

0 )] ≤ 1

L
logE[logRL(XL−1

0 )]

1



≤ 1

L
logH(XL−1

0 )

L→∞−−−−→ 0.

Finally, 5/L→ 0 as L→∞, as well. So in total, we get

1

L
E[logRL(XL−1

0 ) + log logRL(XL−1
0 ) + 5]

L→∞−−−−→ H.

1.2 The Burrows-Wheeler transform

Here is an algorithm that some people claim works better than the Lempel-Ziv coding
scheme.

Example 1.1. To compress the string SHANNON, a string from the English alphabet,
we’ll consider all the cyclic permutations and lexicographically order them:

SHANNON ANNONSH
HANNONS HANNONS
ANNONSH NNONSHA
NNONSHA 7→ NONSHAN
NONSHAN NSHANNO
ONSHANN ONSHANN
NSHANNO SHANNON

Transmit the last column (in compressed form) and the number of the row that has the
empirical string. The decompressor (after decompression) gets HSANONN and the number
7.

The decompressor can now recover the first column by lexicographically ordering the
symbols (because each symbol in the last column shows up the same number of times it
does in the original string). Then, the decompressor knows a list of pairs of symbols (the
first and last symbol of each row). Using this, the decompressor can now figure out the
second column by cyclically permuting these pairs and lexicographically ordering them,
and so on. In this way, the decompressor can recover the original string.

Why does this compress the message? Compressing the last column can be done by e.g.
arithmetic coding and works to compress down to the entropy rate for sequences from an
ergodic process because (as the length of the sequence goes to infinity, and for each fixed
L), the last column becomes piecewise iid with |X |L pieces. The piece for xL−10 appears
(asymptotically in n) np(xL−10 ) times and has marginal with law p(x | xL−10 ). Here,

H(XL | XL−1
0 ) =

∑
xL−1
0

p(xL−10 )H(p(x | xL−10 ), x ∈X )

is just the L-Markov approximation to the entropy rate. So we can compress to the entropy
rate as L→∞.
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1.3 Compression of iid sequences at rate R bits/symbol

Leading up to distributed data compression, we will first discuss the fixed length to fixed
length (fixed-to-fixed) formulation of point to point data compression. To recognize the
relevance of entropy, we need to allow for a probability of error in decompression (which
becomes vanishingly small as the block length increases).

Definition 1.1. We’ll say that compression can be done at rate R bits/symbol if there
is a sequence of pairs of maps ((en, dn) : n ≥ 1) where en : X n → [Mn] := {1, . . . ,Mn}
and dn : [Mn]→X n such that

lim sup
n→∞

1

n
Mn ≤ R

and
lim
n→∞

P(dn(en(Xn
1 )) 6= Xn

1 ) = 0.

Theorem 1.1. Let X1, X2, . . . be iid X -valued with entropy rate H. Then compression
can be done at rate H and cannot be done at any rate < H.

Remark 1.1. This theorem is also true for arbitrary stationary sequences, but we will not
prove that here.

Proof. Achievability: First, observe that it’s enough to show that for all ε > 0, compression
can be done at rate H + ε; this is because we can take ε = 1/m for large enough n

(depending on m). Recall that A
(n)
δ denotes the set of weakly ε-typical sequences. We

know that |A(n)
δ | ≤ 2n(H+δ) and

lim
n→∞

P(Xn
1 ∈ A

(n)
δ ) = 1.

So if en : X n → [d2n(H+δ)e + 1] gives a unique image to each element of A
(n)
δ and maps

(A
(n)
δ )c to a single image, then

lim sup
n→∞

1

n
log(d2n(H+δ)e+ 1) = H + δ,

and
P(dn(en(Xn

1 )) 6= Xn
1 ) ≤ P(Xn

1 ∈ (A
(n)
δ )c)

n→∞−−−→ 0.

So take δ = ε.
Converse: Given any ((en, dn), n ≥ 1) , denote Wn = en(Xn

1 ) and X̂n
1 = dn(Wn). Then

we have the Markov chain Xn
1 −Wn − X̂n

1 . We get from Fano’s inequality that

H(Xn
1 |Wn) ≤ P(dn(en(Xn

1 )) 6= X̂n
1 )︸ ︷︷ ︸

p
(n)
error

log |X |+ h(p(n)error)︸ ︷︷ ︸
≤1
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So if p
(n)
error → 0 as n→∞, then

1

n
H(Xn

1 |Wn)→ 0

as n→∞. But
1

n
H(Xn

1 ,Wn) =
1

n
H(Wn) +

1

n
H(Xn

1 |Wn)→ 0,

and
1

n
H(Xn

1 ,Wn) =
1

n
H(Xn

1 ) +
1

n
H(Wn | Xn

1 ).

So

lim inf
n→∞

1

n
H(Wn) ≥ H(X1),

which is the entropy rate of the iid sequence. Hence,

lim inf
n

1

n
logMn ≥ H(X1).
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